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Aims and scope 

• To provide more nuanced and more general introduction to 
system priors (devised by Andrle and Beneš within the DSGE 
context) 

• To demonstrate the generality of principles and its wide scope 
of application 

• To illustrate the use of system priors with a simple but 
practically relevant example 

 

 

• ... to invite fellow researchers to jump on the bandwagon 



What are system priors? 

• Economically-meaningful priors about high-level model 
properties  

• impulse-response functions 

• variance error decompositions 

• frequency-domain properties 

• sacrifice ratios 

• ...anything that can be computed with the model 

• Two layer approach that facilitates formulation of priors on 
both the parameter and model level 

• Complement rather than substitute for traditional Bayesian 
setup 

 

 

 



Why and when one should use system priors? 

• In complex models individual parameters are difficult to 
interpret. 

• Reasonable priors for individual parameters may lead in sum 
to highly erratic priors about the overall model behavior. 

• Even non-informative priors can be implicitly very informative in a 
highly undesirable way 

• Prior predictive analysis – which parameter priors “bite”? 

• Policy makers only hold firm views about the economic 
behavior. 

• Communication channel between modelers and policy makers 

 

 

 



First glance at system priors 

• Traditional bayesian setup 

p(θ|Y;Μ) ∝ L(Y|θ;Μ) × pm(θ) 

 

• System priors setup 

p(θ|Y;Μ) ∝ L(Y|θ;Μ) × [ ps(h(θ);M) ×  pm(θ)] 

 

•  pm(θ) – priors on individual parameters 

•  ps(h(θ);M) – system priors „add-on“ 

• [ps(h(θ);M) ×  pm(θ)] – composite prior enabling to implement 

views on elements in both layers 



How to understand system priors I 

• (Non-conjugate) dummy observation prior 

• Instead of inserting dummy observations into the dataset, create a 
dummy/artificial likelihood (for the auxiliary model) that 
summarizes the information in the dummy observations 

• [ ps(h(θ);M) ×  pm(θ)] ≡ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟 𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

 

• Posterior inference is obtained by updating priors on individual 
parameters twice: 

• first with artificial likelihood of the auxiliary model (system priors) 

• second with real likelihood based on observed data 

 



How to understand system priors II 

• Penalized likelihood problem 

• Taking logs of the RHS... 

p(θ|Y;Μ) ∝ L(Y|θ;Μ) × [ ps(h(θ);M) ×  pm(θ)] 

• ... one obtains 

log(L(Y|θ;Μ)) + log pm(θ) + log(ps(h(θ);M) 

 

• Finding the mode of the posterior distribution is a traditional 
maximum likelihood approach with additional penalties that 
“regularize” the problem 

 

• Penalty terms are nothing new in econometrics 

• ridge regression 

• lasso 

• many others... 

 



Related literature I 

• A desire for a priori constraints on model properties in not 
new, however most of the existing attempts only have ad hoc 
nature 

• priors only solve specific a problem at hand (e.g. steady-state 
priors –  Villani, 2005; priors on impulse responses – Dwyer, 1998, 
Kocięcki, 2012; long-run priors – Giannone et al., 2016; priors on 
frequencies – Planas et al., 2008) 

• priors only take specific form (usually gaussian priors) 

• More general approaches 

• Feature of interest priors: Hollifield et al. (2003) – this approach is 
conceptually identical to system priors 

• Priors on observables: Jarociński and Marcet (2013) 



Related literature II 

Comparison of our approach with that of Jarociński and Marcet  

• Both approaches can be used to solve similar problems, 
however they differ in concept (and flexibility & versatility). 

• Both approaches have to solve the inverse problem: 

• Jarociński and Marcet 

• Priors on high-level features -> Priors on observables -> Fredholm 
equation/fixed point solution -> implied priors on individual 
parameters -> bayesian update (likelihood) -> posterior distribution 

• System priors 

• Priors on individual parameters -> bayesian update (artificial 
likelihood) -> bayesian update (likelihood) -> posterior distribution 



Illustrative example 

• Stationary AR(2) process with additional belief that most of its 
variance is generated by business-cycle frequencies 

• AR(2) is a very simple case, but the process can exhibit non-trivial 
dynamics 

• We use the example only as an illustration, however it can be 
quite useful for empirical work  

• output gaps are frequently modelled as the AR(2) process: (see 
e.g. Watson, 1986, Clark, 1987, Kuttner, 1994, Planas et al., 2008, 
Jarociński and Lenza, 2016  and many others) 

• the same goes for inflation gaps (Clark and Doh, 2014) 

• ...or unemployment gaps (Chan et al., 2016) 

 



Illustrative example 

If the AR(2) is used to capture some “business-cycle-gap” variable, what are 
the options to consider? 

• basic Gaussian option: Chan and Grant(2017); earlier versions of Chan et al. 
(2015) 

• model reparametrization: Planas et al. (2008) 

• more refined Gaussian option (“gamekeeper’s trick”): Chan et al. (2015); 
Grant and Chan (2017); Lenza and Jarociński (2016) 

• System priors based on the business-to-total-variance ratio 
• at least 60% of variance comes from business cycle frequencies 
• the ratio follows some distribution [Be(15,5) is used in the paper] 

 

𝑟𝑎𝑡𝑖𝑜 =  Sy w dw
b

a
/ Sy w dw , 

 Sy w  – spectral density of the process 

 a,b – limits for business cycle frequencies 

 



Basic Gaussian option 

 

 



More refined Gaussian option I 

 

 

Grant and Chan (2017): 𝑁  
1.3
−0.7

, 𝐼(2)  



More refined Gaussian option II 

 

 

Lenza and Jarociński (2016): 𝑁  
1.352
−0.508

,
0.0806 −0.0578
−0.0578 0.0464

 



System priors 

 

 

At least 60 % Be(15,5) 



Conclusions 

• System priors represent a flexible way of incorporating 
economically meaningful information. 

• They are very general and can be easily implemented within 
existing Bayesian toolkit. 

• The paper places emphasis on the elements and mechanics of 
system priors’ application. 

• Implementation of system priors was illustrated using second-
order autoregressive process and constraints on stationarity 
and frequency-domain properties. 

• Next stop: system priors for VARs 



Thank you for your attention 

• Q & A section 
• Questions and comments are more than welcome! 

• Discussion 
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Back-up slides 1 

Stationary AR(2) Chan et al. (2015) 

Lenza and Jarociński (2016)  System priors, at least 60% 



Back-up slides 2: Impulse response functions 

Stationary AR(2) Chan et al. (2015) 

Lenza and Jarociński (2016)  System priors, at least 60% 



Back-up slides 2: System priors – alternatives 


