
 

 

 

A NOTE ON THE EFFICIENT SIMULATION IN 

STATE SPACE MODELS 

 

Miroslav Plašil*1 

Czech National Bank, University of Economics, Prague 

  November 24, 2016 

 

 

 

 

                                      
* E-mail: miroslav.plasil@cnb.cz 
1 I would like to thank Michal Andrle for numerous discussions and helpful comments. 



1 Introduction 

State space models have become one of the most popular tools in modern 

Bayesian econometrics. The state-space representation can encompass a wide 

class of diverse models, including structural time series models, time-varying 

parameter models, dynamic factor models and many others. Bayesian estima-

tion of state space models builds on the Markov chain Monte Carlo (MCMC) 

methods and feature many well-established algorithms for the simulation of 

latent-states (see e.g. Carter and Kohn, 1994; de Jong and Shepard, 1995; 

Durbin and Koopman, 2002). These algorithms, however, rely on multiple 

loops through time, which may complicate their effective code implementation 

and, perhaps even more importantly, limit their conceptual transparency. Mo-

tivated by these considerations, Chan and Jeliazkov (2009) build on the al-

ternative derivation of the joint density of the states and discuss their effective 

estimation.   

This short note provides a parallel derivation of the sampler proposed by 

Chan and Jeliazkov (2009). It draws on the fact that Kalman recursions are 

just a computationally effective solution of the least squares problem. The 

equivalence between least-squares estimation theory and the probabilistically 

based mean-square estimation was well understood in the old days, however 

it is somewhat neglected by a wider economic audience nowadays. That is to 

our detriment since (as Gauss puts it himself) the least-squares method gives 

rise to several elegant analytical investigations (cf. Sorenson, 1970). 

The purpose of the note is purely methodological. The alternative derivation 

outlined below is provided with a hope that it can be found more accessible 

and easier to follow by some readers. On the route to its ultimate goal, the 

note may also offer some additional insights on the relation to other existing 

methods while ticking off the possibilities for further practical enhancements.    

2 Chan and Jeliazkov: alternative derivation 

2.1 A primer on the least-square estimation 

For the sake of completeness and to set up the notation it is useful to reca-

pitulate some basic (and very well-known) facts from the least-squares theory. 

Suppose that the data and parameters are related according to the model � = �� + � 



where � are measurement errors, � and � are formed by the observed data 

and � is a set of parameters to be estimated. The idea is to make the errors 

‘small’ in some sense, i.e. to make them close to zero as possible: � = � − �� ≈ 0 

The method of least squares meets this objective by minimizing the sum of 

the squared residuals, which is equivalent to minimizing the square of the 

norm: 

 min � = ‖�� − �‖2 =‖�‖2 = �12 + Ȃ+ ��2  (1) 

The minimization problem (1) is known to have a closed-form solution: 

 �̂ = (�′�)−1�′� (2) 

Moreover, if the measurement errors are assumed to be Gaussian, the covari-

ance matrix of the estimator is equal to 

 ���(�̂) = �2(�′�)−1 (3) 

where �2 the variance of the error term. 

In some applications, the researchers may wish to work with several objectives, �1, �2,… , � , all of which should be minimized. In this case, a standard solu-

tion for finding the values of the unknown parameter vector, �, is to use a 

weighted sum objective: 

 � = !1�1 + Ȃ+ ! � = !1‖�1� − �1‖2 + Ȃ+ ! ‖� � − � ‖2 (4) 

where !1,… , !  are positive constants representing the weights attached to 

individual objectives. The higher is the value of !", the stronger is our desire 

for �" to be small. Since scaling all the weights by any positive number does 

not change the minimum of (4), it is possible to set !1 = 1 with no loss of 

generality. 

Ridge regression is a prototypical example of the bi-objective least-squares 

problem with �2 = $ and �2 =  %. It seeks to minimize the norm  ‖�‖2 along-

side to the traditional minimization of the sum of the squared residuals. A 

well-known Hodrick-Prescott filter can also be interpreted as an application 

of a ridge regression with �1 = $, �2 equal to a second-differencing matrix 

and �2 =  %.2 

                                      
2 This interpretation of the Hodrick-Prescott filter immediately allows for the construction of the 

confidence intervals, see Giles (2013). 



The weighted-sum objective (4) can be minimized using the data augmenta-

tion approach also known as stacking. In particular, one can solve (4) by 

stacking the objectives one below another and expressing � as a norm of a 

single vector: 

� = ∥̂̂̂
√!1(�1� − �1)Ȃ√! (� � − � )̂̂̂∥

2
. 

In other words, forming stacked matrices 

 �̃ = ̂̂̂
√!1�1Ȃ√! � ̂̂̂,   � ̃ = ̂̂̂

√!1�1Ȃ√! � ̂̂̂  (5) 

one can reduce (4) to a standard least-squares problem where � can be found 

as 

 �̃ = (�̃′�̃)−1�̃′� ̃ (6) 

2.2 The sampler 

Throughout, I consider a simple state space model where, for 3 = 1,… , 4 ,  5 × 1 vector of observations �7 is assumed to depend on the 8 × 1 vector of 

latent states, 97:3 
 �7 = :797 + ;7 (7) 

 97 = <797−1 + =7 (8) 

and (8) is initialized with 91 ~ ?(@1,A), and 

(;7=7)~? (0, (Ω11 00 Ω22)). 
Using standard matrix notation: � = (�1′ ,… , ��′ )′, 9 = (91′ ,… , 9�′ )′, 

                                      
3 I use the same notation as the original paper by Chan and Jeliazkov (2009) to make potential cross-

check easier. Note however, that I consider a slightly less general model than the authors above. This 

is mainly done for the expositional ease, but the derivation provided below can be easily extended to a 

more general model (at the cost of slightly heavier notation). 



: = [:1 Ȃ :�
] ;L =

̂̂
̂̂̂

$M−<2 $M−<3 $MȂ Ȃ−<� $M ̂̂
̂̂̂. 

;~?(0, $� ⊗ Ω11) =~?(0, P), 
where  

P =
̂̂
̂̂̂

A Ω22 Ω22 Ȃ Ω22̂̂
̂̂̂, 

the state-space model (7)-(8) can be written in the compact form as: 

� = :9 + ; L9 = = 

From the least-square perspective, any estimate of the state sequence 9 should 

make discrepancies in the measurement as well as the state equation as small 

as possible (i.e. �7 − :797 ≈ 0 and 97 − <797−1 ≈ 0, for 3 = 1,… , 4 ). This can 

be achieved by minimizing the bi-objective4 least square problem: 

 !1‖:9 − �‖2 + !2‖L9 − %‖2.  (9) 

Pursuing the data-augmentation approach outlined in (5), we obtain: 

�̃ = [ √!1:√!2L] , �̃ =  [ √!1�√!2%]. 

                                      
4 In fact, the weighted objective function comprises of 3 objectives as one should also minimize the 

term: @1′A−1@1 that corresponds to initial-conditions constraint. To follow Chan and Jeliazkov (2009) 

as close as possible, I only work with two objectives, since the objective for initial conditions has already 

been stacked in their matrices L and P. For simplicity, I assume that @1 is set to zero vector. An 

extension to a more general case of specific initial conditions is straightforward and is provided in 

Appendix for convenience. 



Making the use of (6), its standard OLS solution can be expressed as: 

 ([√!1: √!2L][√!1:√!2L])−1 [√!1: √!2L] [√!1�√!2%] = (10) 

 = (!1:′: + !2L′L)−1!1:′� 

If the errors are not tied by any stochastic restrictions and distributional as-

sumptions (that may not hold in practice), the equation (10) just defines a 

flexible least squares (FLS) estimator of Kalaba and Tesfatsion (1989) who 

set !1 = 1. The authors do not suggest any specific value for !2 and rather 

use it as a tuning parameter.5 On the other hand, if the errors are presumed 

to be Gaussian, then the weights !1, !2 can be set optimally to minimize the 

mean square error. In particular, the weights should equal to the inverse of 

the error variance in the measurement and the state equation, respectively: 

i.e. !1 = ($ ⊗ Ω11−1) and !2 = P−1. 
Under this setting, the mean of 9 emerges as  

9̂ = (:′($ ⊗ Ω11−1): + L′P−1L)−1:′($ ⊗ Ω11−1)�. 

and the variance is given by 

 U−1 = (:′($ ⊗ Ω11−1): + V)−1, (11) 

where V = L′P−1L. To derive the variance, we applied its standard OLS 

expression �2(�̃′�̃)−1
. Since all ‘observations’ in �̃ are scaled by the inverse 

variance of the error terms, the symbol �2 actually represents a unit variance 

and the expression reduces to (�̃′�̃)−1. One can easily check that this is 

exactly the same result as that obtained by Chan and Jeliazkov (2009). 

Using (11) it is further possible to simplify the expression for the mean as 

 9̂ = U−1(:′($ ⊗ Ω11−1)�), (12) 

                                      
5 They rather argue that the whole collection of paths for 9 can be of interest. It is also interesting 

to note, that (despite their awareness of the possibility) Kalaba and Tesfatsion (1989) do not take the 

advantage of the special form of the matrix to be inverted and propose sequential procedure to solve 

the problem. Montana et al. (2009) have shown that FLS recursions are largely similar to traditional 

Kalman filter/smoother.  



which is closely related, but perhaps more intuitive expression for the mean 

than its original counterpart.  

Also note that it is always possible to rescale the weights in such a way that !1 = $ (see above). This leads to alternative weights for !2 = ($ ⊗ Ω11)P−1, 
which simply corresponds to the signal-to-noise ratio of the state space model. 

It is a well-known fact (often alluded to within the context of the Hodrick-

Prescott filter, for example) that variability of 9 does not depend on the ab-

solute magnitude of variances, but is only driven by their relative magnitude 

(i.e. by signal-to-noise ratio). 

In order to generate samples from the distribution 9~?(9̂, U−1) efficiently, it 

is necessary ‘invert’ the large matrix U  in a computationally inexpensive 

way.6 As noted by Chan and Jeliazkov (2009) this goal can be handled by the 

application of the sparsity-aware algorithms due to the specific form of the 

matrix U . It can be shown that U  is a block band tridiagonal matrix that 

contains a lot of zeros (see Kalaba and Tesfatsion, 1989 and Aravkin et al., 

2013 for its general form). Since under mild assumptions the matrix is positive 

definite (Lütkepohl and Herwartz, 1996) its fast inverse can be obtained via 

a Cholesky decomposition and recursive inversion of a triangular matrix. The 

algorithms designed for speedy sparse-matrix computations are readily avail-

able on many modern software platforms, including Matlab or R, which makes 

the code implementation of the sampler very fast7 and conceptually elegant. 

3 Summary and possible extensions 

This short note provided complementary look on the latent-state sampler pro-

posed by Chan and Jeliazkov (2009). The formulation along the lines of the 

least-squares paradigm can be easier to follow for some readers while providing 

closer insights on some interesting links to other existing methods. Indeed, 

the smoothed estimate of the latent states can be seen as little more than the 

application of the popular ridge regression (or Tikhonov regularization).8 

                                      
6 Since we essentially solve a least square problem, one can potentially use any general sparse least-

squares solvers. 
7 In other domains (Gaussian Markov Random Fields), this approach is known as a Cholesky factor 

algorithm. McCausland et al. (2011) investigate its performance vis-à-vis Kalman filter-based sampling 

and find substantial efficiency gains over the methods relying on the Kalman filter.  
8 Secondary objectives �2,… , �  can be interpreted as regularizing terms. This implies that multi-

objective least squares formulation can be also seen as a regularized estimation problem. 



Another advantage of the least-square formulation is that it instantly provides 

a fertile and fully general ground for many relevant extensions. The researcher 

can freely add another objectives (penalty terms) into the cost function (6) to 

express her desire for the additional constraints on the sequence of states, 9. 

Such restrictions may help to accommodate relevant prior knowledge about 

the model behavior, for example. Lütkepohl and Herwartz (1999) use addi-

tional penalties to account for seasonal patterns in time-varying coefficients, 

Andrle (2014) uses additional objective to obtain uncorrelated structural 

shocks in the DSGE model (presented in a state-space form) and Andrle and 

de Wind (2017) use the stacked least-squares formulation to elicit system 

priors within the time-varying VAR context. In general, any prior of the sort ‖W9 − 9XYZ‖2 where W is some convenient matrix for the problem at hand and  9XYZ stands for some desired sequence of 9 can be easily implemented. In some 

respect, such an approach is close to optimal control theory. It should be also 

stressed that the objectives do not need to take quadratic form and the 

method can be made much more general. However, costly numerical optimi-

zation would be usually necessary if the specific conditions are not met. 
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Appendix 

Let us consider a case when the mean of the initial state, @0, is not set to zero. 

Define �2 = (@0, 0,… ,0) and analogously to (9) solve the bi-objective least 

squares problem: 

!1‖:9 − �‖2 + !2‖L9 − �2‖2. 
Its solution, again, is analogous to Equation (10): 

([√!1: √!2L][√!1:√!2L])−1 [√!1: √!2L][ √!1�√!2�2] 

and in the case of Gaussian errors it can be expressed as 9̂ = (:′($ ⊗ Ω11−1): + L′P−1L)−1(:′($ ⊗ Ω11−1)� + L′P−1�2) =    = U−1(:′($ ⊗ Ω11−1)� + L′P−1�2). 
The variance of the states remains unchanged. 


