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Foreword and Executive Summary 

This note presents a collection of exploratory and inferential methods designed for a better 

understanding of the posterior distribution of impulse-response functions (IRFs) which are 

generated by structural VARs or other structural models. Importantly, the IRFs identified 

with sign-restrictions can be tackled by these methods as well. Initial exploration of the set of 

impulse responses seems to be a natural thing to do and its necessity would be 

acknowledged by many practitioners. In applied practice, however, natural analytical 

instincts seem to be somewhat suppressed and both exploration and presentation of the 

results is often reduced to a set of marginal (pointwise) distributions – a practice which 

might be insufficient or even misleading. This commonly applied approach can be 

particularly problematic for VARs identified with sign-restrictions where each sampled IRF 

corresponds to a different structural model.  

One of the potential reasons for the current state of affairs might be that practitioners lack 

suitable tools for more subtle analysis of the posterior distribution of IRFs. However, such 

tools are readily available, at least in concept. At this point, it is useful to note that results of 

the analysis are oftentimes digested visually by inspecting the IRFs plot. This provides a 

useful format for digesting relevant information as visual cognition of humans is extremely 

strong. But this also suggests that a pursuit for a better understanding the IRF behaviour can 

be based on visual exploration. To make visual exploration as effective as possible it might 

be useful to stick to the philosophy of modern multivariate visualization and draw on the 

ideas set out by the giants of the exploratory visual analysis including Jacques Bertin or John 

Tukey.    

Modern visualization is an interactive exploratory process where the analysts interrogates 

the data and receives answers to her questions. It sets out a pursuit for interesting patterns 

that aid interpretation of the underlying structure of the data. In more formal parlance, the 

process of „asking questions“ corresponds to formulating some optimization problem of 

analytical interest and “answering questions” means to find and graphically display its 

optimum. In this note, I do not have an ambition to codify a set of questions that should be 

always asked, neither to provide much guidance on what plots should be always reported. 

The note should only serve as an invitation to a certain concept of reasoning. 

In the context of IRFs, many empirically relevant questions can be answered within a concept 

of simultaneous confidence bands, i.e. bands containing entire path of responses over time 

(up to a fixed horizon). Although simultaneous bands are traditionally related to statistical 

inference, they might be interpreted in more general terms. In particular, the idea of some 

constrained area with desired properties where its width, shape or both convey some 

meaningful information fits well to exploratory needs. 

The relevance of questions can be analysis-dependent, but some of the questions will 

probably appear more frequently. Is the pointwise median a fair representative of the actual 



shape of the IRF and does it truly capture a central tendency of its distribution? Is the path of 

the majority of sampled IRFs concentrated around the point-wise median? Do the sampled 

IRFs share the common shape or do they exhibit zig-zag pattern with many crossings? Are 

there any “dense” regions close to critical values formed by point-wise quantiles (i.e. at the 

border of traditional confidence bands)? What is the portion of the sampled impulse-

response functions whose shape goes against prior views of the analyst? What are the 

narrowest simultaneous confidence bands with user-specified coverage? These are all 

questions that commonly arise in the final phase of the analysis. 

Although different exploratory questions may emerge in the course of the analysis, they only 

differ in the formulation of the objective function to be optimized. It follows that technical 

implementation of the exploratory analysis does not need to change once practitioners are 

able to formulate their question as an objective function. In general however, the 

optimization is difficult since one has to optimize over all horizons of the IRF. Since the 

horizon length will frequently attain dozens of periods, this leads to very complex and 

computationally highly involved optimization problems that can hardly be efficiently solved 

in a real time.  

To reduce the complexity of the problem, I make an assumption that the shape and the width 

of the band do not change too frequently and eventual changes are relatively smooth. This 

assumption enables to optimize the objective function only over few preselected horizons 

and reconstruct whole path of the band using some smoothly behaved interpolation method. 

In particular, the reconstruction can be treated as a missing observations problem where the 

path of the band can be obtained by a convenient filtering (smoothing) algorithm. To keep 

computational burden low, Hodrick-Prescott filter with observations missing for all but 

preselected horizons is employed in practical applications. 

Due to potentially high complexity and poor tractability the objective function, the optimum 

is generally found by genetic algorithms. This adds to computational burden, but sensible 

solutions can usually be obtained after relatively low number of eliminations rounds of the 

algorithm. Depending on a form of objective function and the number of posterior draws the 

whole optimization should take no more than few minutes which should not be prohibitive 

in practical applications. Since genetic algorithms allow for parallel computing, calculations 

might be further sped up considerably.  

The experience so far suggests that the method generates analytically helpful outputs in 

reasonable time. In cases where some comparison with other methods is possible the method 

seems to provide very promising results. In particular, the proposed method regularly beats 

all its known competitors by a great margin when the goal is to construct narrowest 

confidence bands with desired coverage. 

  



1 Introduction 

In many practical situations, a non-linear function of model parameters such as the 

impulse-response function, multi-period forecasts or some frequency-domain 

characteristic is used to summarize dynamic behavior of the model. This is because 

individual coefficients are sometimes hard to interpret or convey only limited 

information which is not sufficient for full understanding of the model’s most 

relevant features. Functions in question can be readily presented in visual form and 

thus provide intuitive and appealing tool for both practitioners and wider public to 

digest the outcomes of the underlying analysis. 

To present estimation results or prior-implied behavior of the model through its 

higher-level features – say an impulse-response function (IRF) – an analyst usually 

provides the median and supplies a reader with the line of pointwise quantiles as a 

measure of estimation uncertainty. Unfortunately, such a visual display is not always 

very informative about the actual behavior implied by the model, or even worse: it 

can be sometimes highly misleading.  

Fig. 1 illustrates the issue. Namely, the panels depict two sets of impulse-responses 

which share almost the same median and pointwise 67% confidence bands. If the 

analysis stops here, it might go unnoticed that the models actually produce very 

different sets of impulse response functions. While the impulse responses in the left 

panel are relatively similar to each other and share the same hump-shaped pattern, 

impulse-response functions depicted in the right panel exhibit highly irregular zig-

zag behavior. Naturally, this has serious implications for the overall assessment of 

the model’s economic plausibility. By the same token, heedless application of 

pointwise regions may also blur the soundness of parameter-implied priors if prior 

predictive analysis is carried out. 

It has been recognized for quite a long time that simultaneous confidence/credible 

intervals may provide desired remedy in situations where distortions from the use of 

“pointwise” approach arise (see e.g. Jordà, 2009; Inoue and Kilian, 2016; Lűtkepohl et 

al., 2016 or Montiel Olea and Plagborg-Mőller, 2017). Simultaneous bands may help 

answer relevant questions about the shape of the IRFs, hypotheses about positive 

response in selected periods and many others. In this note, I argue that simultaneous 

confidence/credible1 bands may also serve as a straightforward and versatile tool for 

the thorough exploration of the impulse-response functions’ distribution.  

                                                           
1 Despite methodological differences, the terms “confidence bands” and “credible bands” are used 

interchangeably in this note. Although incorrect from Bayesian perspective, referring to “confidence bands” is 

sometimes preferred due to the relation to the existing literature. 



Figure 1: Example of identical pointwise characteristics for different set of IRFs 

 

In wider terms, simultaneous confidence bands can be understood as a constrained 

area showing some desirable feature. User-specified simultaneous coverage would 

be the most natural requirement for inferential purposes, but the feature to be 

explored can be of a more general nature. Are there any impulse responses lying 

close to the pointwise median line and is the calculated median reasonable summary 

of the set of IRFs? Does the set suggest some common pattern across IRFs or do the 

individual IRFs show highly irregular behavior?  Where is situated the most “dense” 

region and are there any dense regions lying at the ends of the IRFs distribution? 

What is the narrowest possible credible band with a predefined coverage? These are 

all legitimate questions that contribute to a better understanding of the IRFs’ 

characteristics and enhance practitioners’ knowledge.  

Importantly, all these questions can be answered within the context of simultaneous 

bands. Deeper exploration of the behavior might be particularly needed in structural 

VAR models identified with sign restrictions where a set of IRFs does not describe 

behavior of a single model but summarizes information coming from all admissible 

(and potentially very different) structural models. At this point, it is also worth 

noting that although further discussion is limited to impulse-response functions 

(IRFs), the methodology proposed below can be equally employed for other 

functions of individual coefficients where similar needs for simultaneous inference 

emerge. An example would be a summary of multiple-horizon forecasts. 

To facilitate exploratory process of the posterior distribution of the IRFs, I propose a 

suite of very simple methods for the construction of simultaneous confidence bands 

with user-specified properties. All methods are based on the same principle and only 
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differ in a desired feature to be exhibited via the IRF plot. The approach is primarily 

designed for Bayesian inference where IRFs are derived from posterior draws of 

parameters but it may also be employed for the construction of the bands from 

bootstrap samples. It provides enough flexibility to account for varying exploratory 

strategies pursued by practitioners and its algorithmic implementation is fairly 

straightforward.  

It should be noted, however, that the flexibility comes at the price of higher 

computational burden since the method relies on explicit optimization methods. 

Nevertheless under some reasonable assumptions which will be discussed below the 

complexity of the optimization problem can be considerably reduced. The experience 

so far suggests that reasonable results can be obtained in order of minutes using 

standard personal computer (and only one core of the processor), which should not 

be prohibitive in real-world applications. Moreover, optimization algorithm applied 

below allows for parallel computations which can greatly speed up the searching 

process and reduce the computation time to only few minutes or dozens of seconds.  

Even though exploratory motives prevail somewhat over inferential purposes in this 

note; the method can be readily used for traditional inference. If the ultimate goal is 

to produce simultaneous credible intervals with desired coverage then the proposed 

method seems to always provide the narrowest bands among all its known 

competitors. Although the application of the method to the real-world problems is 

still limited, the performance observed so far is encouraging. 

The remainder of the note is organized as follows. In Section 2, I sketch out the 

method of constructing simultaneous confidence bands and discuss its merits and 

limitations. In Section 3, the proposed methodology is illustrated on a simple 

example of an IRF generated by the univariate AR(2) process. Some exploratory 

strategies with a potential to provide useful insights to practitioners are presented. 

Section 4 documents the performance of the proposed approach in real world 

applications and the final section concludes. Computational details are relegated to 

Appendices.  

2 Construction of simultaneous credible intervals 

Recently, the interest in simultaneous credible intervals for impulse response 

functions has gained some momentum and a bulk of methods has been proposed in 

the (“VAR-oriented”) literature. Their thorough description is beyond the scope of 

this note and interested readers are referred to Lűtkepohl et al. (2016) or Montiel 

Olea and Plagborg-Mőller (2017) for a comprehensive review. Note that these 

methods were all designed with inferential objectives in mind. This is not the 



ultimate objective pursued here, but it may serve as a good starting point as the goal 

to create simultaneous confidence bands with desired coverage is well understood by 

the practitioners. Later, other objectives will be pursued using the same 

methodology. 

If we disregard inferential methods drawing on asymptotic considerations which 

usually show disappointing performance in real-world applications (cf. Lűtkepohl et 

al., 2016), the majority of methods for simultaneous bands relies on classical 

techniques of simultaneous parameter inference applied to bootstrap or posterior 

distribution of IRFs. Common problem with these methods is that they tend to be too 

conservative and provide unnecessarily wide bands. Moreover, their relative 

performance may vary across applications and it is thus not clear which method 

should be preferred in the particular case. To provide a way out, Montiel Olea and 

Plagborg-Mőller (2017) introduced a one-parameter class of confidence bands and 

showed that it includes most of the popular choices in applied work.2 The one-

parameter band, ℬ̂(𝑐), can be defined as: 

 ℬ̂(𝑐) ≡ [𝜃1 − 𝜎̂1𝑐, 𝜃1 + 𝜎̂1𝑐] × [𝜃2 − 𝜎̂2𝑐, 𝜃2 + 𝜎̂2𝑐] × … × [𝜃𝑘 − 𝜎̂𝑘𝑐, 𝜃𝑘 + 𝜎̂𝑘𝑐],  

where 𝜃𝑗  is the value of impulse-response at time j, 𝜎̂1is the pointwise standard error 

for 𝜃𝑗, 𝑐 > 0 is a positive scaling constant and 𝑘 is the length of the IRF vector. In 

other words, one-parameter class is defined as a Cartesian product of scaled-up 

versions of the traditional pointwise confidence intervals where the same scaling 

factor is used for all elements of the IRF vector. Montiel Olea and Plagborg-Mőller, 

2017 then suggest using sup-t bands as an optimal representative of the one-

parameter class and show that these are indeed the narrowest possible bands within 

the class. The bands are obtained by picking the smallest c that guarantees 

predefined simultaneous coverage equal to 1 − 𝛼. The implementation of sup-t bands 

for posterior or bootstrap draws is straightforward and computationally convenient – 

simply calculate empirical pointwise 𝛼 quantiles and scale 𝛼 up or down with a 

single factor to obtain critical values that guarantee the exact simultaneous coverage 

of 1 − 𝛼. Since the fraction of IRFs contained in the simultaneous bands is a 

monotonic function in the scaling factor, the univariate optimization is fairly easy 

and optimal value of the factor can be obtained very fast (even by a trial-and-error 

approach). 

Unlike other traditional methods falling into the one-parameter class, construction of 

sup-t confidence bands requires explicit optimization; although an uninvolved one.  

                                                           
2 The class includes Bonferroni or Šidák simultaneous bands, for example. 



As such, sup-t bands may serve as a useful benchmark for more complex 

optimization-based methods. In principle, the paths of critical values can be found by 

using different scaling factors for each horizon so as to recover the narrowest bands 

with nominal coverage of 1 − 𝛼. However given the horizon length, this approach 

leads to multivariate optimization problem of alarming complexity. In practice, 

heuristic searches were proposed to tackle the issue (see Staszewska, 2007 and 

Staszewska-Bystrova and Winker, 2013), but the proposed heuristics are 

computationally demanding and do not even guarantee desired coverage. In 

particular, they usually tend to produce bands with actual coverage below nominal 

level (Lűtkepohl et al., 2016). 

The method proposed in this note can be seen as a compromise between excessively 

complex multivariate search of critical values over each horizon and a univariate 

optimization where the shape and width of bands are regulated through a single 

tuning parameter. The method does not rely on explicit scaling of the pointwise 

quantiles and can be applied directly to actual “values” of the IRF defining the band 

(however, individual scaling of the quantiles is possible, if needed).  

Reduction in complexity is based on the idea that the intervals’ shape and width do 

not exhibit too frequent abrupt changes from one horizon to another. Under this 

assumption, the overall shape can be reasonably approximated by only selecting 

critical values for a small number of horizons. Remaining critical values are then set 

equal to values of some well-behaved (and relatively smooth) function. There are 

many options how to implement this general idea in practice.  

In this note, I treat the interpolation of the bands’ path between predefined points as 

a traditional missing observations problem with the observations missing for all but 

predefined horizons. Specifically, I apply Hodrick-Prescott filter principles to derive 

a smooth path for the bands (see e.g. Schlicht, 2008 or technical Appendix A for 

computational details). This approach guarantees that desired critical values are 

exactly attained in predefined horizons and smooth transition of critical values is 

observed otherwise. Fig. 2 provides some illustrative examples of the confidence 

bands constructed by this approach for a varying number of predefined time-points 

and different values of the smoothing parameter lambda in Hodrick-Prescott filter. 

I will return to practical questions of how to select the initial number of time-points 

(number of preselected horizons) and the value of the smoothing parameter for 

Hodrick-Prescott filter in Section 2.1. At the current stage it is only important to 

realize that the goal of finding simultaneous confidence intervals with desired 

features (e.g. narrowest bands with predefined coverage) can be thought of as an 

optimization problem where the optimum of the objective function is only optimized 



over the arguments related to preselected time-points. In general, the objective 

function can take various forms depending on the exploratory strategy pursued by a 

researcher. The most obvious choice for inferential purposes would be to minimize 

the overall width of confidence bands guaranteeing the desired coverage but other – 

more exploration-driven – choices are possible and scientifically relevant. Some of 

them are discussed in the following sections. 

Figure 2: Example of the bands based on a different number of time-points 

 

Since the objective function can be quite complex to be solved analytically, I find the 

(sub)optimum by means of real-valued genetic algorithms (see e.g. Wright, 2001 or 

Herrera et al. 1998).3 Optimization by genetic algorithms naturally adds to 

computational burden but sensible solutions can usually be found in reasonable time 

if the initial population is not too far from the optimum.  

In many situations of practical interest the exploration strategy may result in a 

constrained optimization problem (e.g. finding the narrowest confidence bands given 

the user-specified coverage) and genetic algorithm must be adapted to handle these 

constraints. Many constraint-handling techniques were proposed in the literature – 

the penalty-function approach being arguably the most popular one (see for example 

Ponsich et al., 2008 for a review). This is also the strategy pursued here. Namely, 

infeasible solutions are assigned a prohibitively high penalty to obtain low 

probability to survive in the next elimination round.4 This method seems to work 

well for the problems at hand, if the initial population contains some feasible 

solutions. If these solutions are hard to find by generating random populations, one 

may obtain initial feasible solutions by first applying genetic algorithm to auxiliary 

                                                           
3 These are all-purpose optimization routines inspired by natural evolution. Unfamiliar readers are encouraged to 

consult existing literature. 
4
 This is very close in spirit to “death penalty method” where infeasible solutions are given zero chance to pass 

the selection step. 
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objective function minimizing the violation of the constraints (e.g. using objective 

function that minimizes the difference between observed and user-specified 

coverage).  

Another option is to follow the suggestion of Chehouri et al. (2016) who propose a 

genetic algorithm operating simultaneously on the population separated into two 

families. These are formed by feasible solutions and solutions that violate the 

constraints, respectively. In each family different objective function is optimized and 

solutions may travel from one family to another one. This approach may lead to 

additional computational cost, however it might be worth a try if it is difficult to 

build sensible initial population and many rounds of the genetic algorithm would be 

needed to reach the optimum. For traditional inference, feasible solutions can be 

generated by other inferential methods that are known to guarantee the predefined 

simultaneous coverage (e.g. sup-t bands).  

In practice, I used a population of 30 individuals and 20 to 100 elimination rounds to 

report all the simultaneous bands in this note. Further improvements in the optimum 

were usually quite small and analytically insignificant. Technical details on the exact 

implementation of the genetic algorithm; in particular the choice of cross-over and 

mutation operators and survivor strategies are given in technical Appendix B.5  

2.1 The Choice of Arbitrary Parameters 

The proposed method relies on some arbitrary decisions which are fully in hands of 

the practitioners. In particular, the researcher needs to select a number of time-points 

and their location to obtain a reasonably-behaved path of the confidence bands. The 

issue of somewhat lesser importance is the choice of the parameter lambda used to 

smoothly connect all arbitrarily chosen time-points. This subchapter discusses 

practical hints that may guide this selection. It also highlights some possibilities how 

to minimize the arbitrariness of the choices. 

No doubt: the concrete choice of a number of time-points and their position is 

analysis-dependent and subject to some initial exploration. One has to face a 

common tradeoff: the number must be relatively small to reduce the complexity of 

the problem but not excessively small to preserve the flexibility of the method. It 

seems natural to select the very first and the very last time-point of the confidence 

interval and complement those with few points lying somewhere in between. In 

                                                           
5 

It should be stressed that technical implementation adopted here should not be seen as golden standard but 

rather as a proof of concept. Other options may work equally well or even considerably better. Practitioners are 

advised to stick to their preferred implementation of genetic algorithms or other flexible optimization routines. 



general, it is useful to pick those horizons where a break in the shape of confidence 

bands is to be expected.  

This information can sometimes be inferred from the shape of the pointwise median 

or based on some other methods for simultaneous confidence bands which are fast to 

compute. In cases where no such information is available (for example, this can be 

complicated for IRFs identified with sign restrictions) the choice of five or six 

equidistantly placed time-points should work reasonably well in the vast majority of 

practical applications. Some experimentation with possible alternatives is a useful 

part of the exploratory process that contributes to a better understanding of the 

analysis outcome. 

Contrary to the usual practice in HP filtering applications, the smoothing parameter 

lambda needs to be set to a quite small value. Setting the value to 1 should work well 

in general and using values above 10 does not usually make much sense unless one 

has a specific reason for doing so. For higher values of lambda, the penalty on 

smoothness of the band’s path is excessively high which produces (usually 

undesirable) spikes in predefined time-points where specific values have to be 

attained – see Fig. 3. The plausibility of the smoothing parameter can be checked by 

visual inspection and compared to prior views on the shape of the IRF. 

Figure 3: Spikes produced by setting too high smoothing parameter 

 

If desired, the arbitrariness of the presented choices can be substituted by explicit 

optimization over additional arguments. Note that it is straightforward to express 

the objective function as a function of additional parameters, say, the smoothing 

parameter or time-points’ location. These would simply represent additional genes of 

the individual (chromosome) in the genetic algorithm. For example, if the number of 

the time-points is set to d, one simply adds d genes into each chromosome to encode 



their position. One additional gene would be necessary to encode the value of the 

smoothing parameter. 

2.2 Illustrative example: IRF of a simple AR(2) process 

To illustrate the method proposed above I use an impulse-response function 

describing behavior of the univariate autoregressive process of order 2. Its marginal 

parameter priors were updated with a system prior that the AR(2) model was 

designed for capturing business-cycle frequencies ranging between 2-8 years (see 

Andrle and Plašil, 2017 for details). As a part of the prior predictive analysis 

practitioners may ask whether such system restrictions on parameters also discipline 

the course of the IRF and if its shape is fully in line with their prior views. To shed 

some lights on this issue, 5000 posterior parameter draws were stored to calculate 

implied path of IFRs. Horizon length was set to 20 periods. Readers unfamiliar with 

system priors or prior predictive analysis do not need to worry and may look at the 

following example as if it were an outcome of some traditional Bayesian estimation. 

Fig. 4a presents a traditional summary with the point-wise median and 67% point-

wise credible intervals (using 16.5% and 83.5% quantiles). Fig. 4b compares 

pointwise credible bands with simultaneous credible bands obtained by a benchmark 

sup-t algorithm. As expected, pointwise credible intervals are considerably narrower 

as their simultaneous coverage is considerably below 67%. Despite different width of 

the bands, both methods seem to deliver similar shape of the IRFs, with diminishing 

but still conspicuous oscillatory waves up to horizon 20.  

Recall that sup-t bands are the narrowest simultaneous credible bands within the 

one-parameter class and can obtained very fast. A natural question is if we can do 

any better by sticking to computationally more intensive methods outside this class – 

in particular, by exploiting the method outlined above.  

To reduce the complexity of the problem I make a use of a “symmetry” principle 

where I only optimize over the time-points defining the “upper” band. The lower 

band is then obtained automatically – as its mirror image around the pointwise 

median. The assumption of the “central” role of the pointwise median is not 

necessary in general but it saves computational cost and makes the comparison with 

sup-t bands more straightforward (note that sup-t bands are actually based on the 

very same assumption). The bands were obtained using 6 time points placed at the 

horizons 1, 3, 7, 10, 15 and 20. Smoothing parameter was set to 1. Placement of the 

time-points was chosen with respect to the shape of pointwise median.  



To start optimization routine, two options can still be considered: namely, one can 

minimize the overall width of the bands either i) indirectly over the set of pointwise 

quantiles defining the critical values, or ii) directly over the set of actual values of the 

IRF.6 First approach can be seen as a multivariate generalization of the sup-t band 

algorithm where different scaling factors are used for each horizon. The bands 

obtained through indirect and direct approach are presented in Fig. 4c and Fig. 4d 

respectively; along with the basic sup-t band to facilitate their mutual comparison. 

Figure 4: Comparison of pointwise and simultaneous credible bands 

   

 

The comparison suggests that the basic sup-t bands which are based on univariate 

optimization seem to work quite well within the methods based on the scaling of 

quantiles since the observed improvements attained by employing different scaling 

factors are quite minor overall. Recall however that the “quantile-scaling” methods 

are generally ineffective if they are used for inference in sign-identified VARs since 
                                                           
6 

These two options will differ due to the assumption of symmetry. Note that the bands based on indirect method 

are not necessarily symmetric in this case, since the principle of symmetry is only applied to quantiles. This does 

not guarantee symmetric bands for asymmetric pointwise distributions. 
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point-wise quantiles make little sense in this case. Luckily, the application of our 

method directly to actual values of the IRF can still be used in the context of sign 

restrictions and quite importantly it also seems to provide sizeable gains vis-à-vis 

quantile-based methods in situations where both approaches are viable (see Fig. 4d). 

One can clearly see that obtained confidence bands are narrower than all its 

competitors and exhibit less wriggling pattern. This is naturally relevant for practical 

applications if simultaneous credible bands are to be used for inference. 

Now suppose that a practitioner wants to learn more about how representative the 

pointwise median is. In many situations doubts about its usefulness as a summary 

statistics are warranted since dense regions of IRFs’ posterior distribution may lie 

elsewhere and may exhibit substantially different shape. It is thus worth exploring 

this aspect more thoroughly. Underlying strategy that corresponds with the goal of 

the exploration would be to find dense simultaneous regions and inspect their shape. 

This can be again achieved by using strategy of narrowest simultaneous bands with 

user-specified coverage, however with a difference that this time the bands may lie 

anywhere in the IRF space and are not by construction tied down to pointwise 

median. If the shape and magnitude of the pointwise median coincide with bands’ 

path for all horizons, it can be considered a useful summary. 

Simultaneous bands complying with the outlined strategy can be constructed in the 

following way: upper band is obtained as before while the lower band is calculated 

as the upper band minus interval width. The width is assumed to differ across 

horizons but only its relatively smooth changes are allowed. This again reduces the 

complexity of the problem and allows for the optimization over a smaller number of 

arguments. More concretely, the objective function is optimized over 9 parameters. 

First six parameters encode the shape of the (upper) simultaneous band. Identically 

to previous exercise relevant time-points are placed at horizons 1, 3, 7, 10, 15 and 20. 

Last three parameters then encode the interval width using the horizons 1, 10 and 20. 

To maintain the complexity of the problem manageable, the width is only encoded 

using three parameters. In practical applications the interval width seems to be 

considerably less volatile than the bands themselves, thus this assumption should be 

quite innocuous. However, experimentation with more complex encoding is of 

course possible. 

Quite naturally, finding optimal solution is now computationally more involved than 

in former case. This is partially because one has to optimize over larger number of 

parameters but also some additional complications arise. In particular, it is more 

difficult to generate initial population of feasible solutions as one usually needs to 

start quite far from the optimum to cover the entire space of the IRF’s posterior 



distribution. This increases number of algorithm rounds necessary to reach final 

solution – in particular for bands with low coverage. In practice, I started with 

generating very wide confidence bands that covered entire space and used auxiliary 

objective function to minimize distance between observed and user-specified 

coverage. Once desired coverage was attained, I minimized the width of the bands to 

find the densest regions complying with desired coverage.7 

Obtained simultaneous credible bands are presented in Fig. 5. Left panel depicts 

simultaneous credible intervals with 30%, 50% and 67% coverage and the pointwise 

median. The results indicate that the pointwise median seems to be a relatively fair 

summary of the IRFs in this particular case as it lies entirely within the 30% 

simultaneous credible region. This is also corroborated by direct comparison of the 

bands with those based on “symmetry” assumption – see Fig. 5, right panel. This is 

not surprising since the behavior of the IRF was a priori disciplined by – 

economically-motivated – restrictions (see above) to exhibit reasonable performance.  

Figure 5: Simultaneous credible bands and the shape of the posterior distribution 

  

In addition, the results also confirm that posterior mass of the IRF distribution is 

mainly concentrated around some “central” IRF with simultaneous confidence 

intervals being quite symmetrical and lying inside each other. This may provide 

additional indication that the course of all IRFs shows quite similar and well-

behaved pattern. As the bands (their coverage) widen, IRFs exhibit increasingly 

                                                           
7
 In theory genetic algorithms do not guarantee attaining global optimum and the algorithm may get stuck in 

local optima. This may lead to different simultaneous credible bands each time the optimization is performed. 

While different solutions may support exploratory goals of the analysis, some users may find this feature 

undesirable. To inspect a danger of occurrence of locally-optimal solutions in greater detail, I run the 

optimization couple of times with different starting populations and all solutions were almost identical. This 

provides some positive indication of a convergence, although it does not need to hold in other settings. 
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discernable downs (at about horizon 7) and ups (horizon 10) which suggests a 

presence of higher and longer-lasting oscillations at the “ends” of the distribution. 

This may be explained by the form of employed system prior which places 

maximum weight on business cycle frequencies but also passes through some 

portion of longer oscillations. If such oscillatory behavior in IRF is at odds with 

practitioner’s prior views, she may consider elicitation of tighter priors on business-

cycle frequencies. 

3 Practical applications 

3.1 Sign-identified monetary shock 

To do… 

4 Conclusions 

To do… 

Statistical inference and formal statistical tests are only valuable when one fully 

understands what the data tell us. However, once you know your data thoroughly, 

all statistical inference becomes redundant. 
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